소개
젖산 (젖산) 은 당효해의 산물인 젖산이 골격근의 산소부족 수축과정에서 체내에서 생성되는데 완전히 유산소가 있는 조건에서 젖산을 제거할수 있어 위중한 환자의 혈액동력학지표로 삼을수 있다.
이름 및 식별자
- DL-Lactic acid
- 2-Hydroxypropanoic acid
- Lactic acid
- Lactic acid, dl-
- Propanoic acid, 2-hydroxy-
- (RS)-2-Hydroxypropionsaeure
- 1-Hydroxyethanecarboxylic acid
- AI3-03130
- Acidum lacticum
- BRN 5238667
- CCRIS 2951
- Lactovagan
- Tonsillosan
- alpha-Hydroxypropionic acid
- Lactic acid solution
- LACTIC ACID, DL-(P)
- Lacticacid(Technical)
- 1-Hydroxyethane 1-carboxylic acid
- ACS
- Ethylidenelactic acid
- Kyselina 2-hydroxypropanova
- Kyselina mlecna
- Lactic Acid (AS)
- Milchsaure
- NSC 367919
- Ordinary lactic acid
- Propionic acid, 2-hydroxy-
- Purac FCC 80
- Racemic lactic acid
- α-Hydroxypropanoic acid
- α-Hydroxypropionic acid
- milk acid
- 2-Hydroxypropionic Acid
- Polylactic acid
- lactate
- Milchsaeure
- DL-Milchsaeure
- Lactic acid USP
- Aethylidenmilchsaeure
- Lacticum acidum
- Lactic acid (natural)
- (+/-)-Lactic acid
- Milchsau
- DL-Lacticacid
- Lactate
+ 확장
- MDL:MFCD00004520
- InChIKey:JVTAAEKCZFNVCJ-UHFFFAOYSA-N
- Inchi:1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
- SMILES:O([H])C([H])(C(=O)O[H])C([H])([H])[H]
- BRN:1209341
화학적 및 물리적 성질
계산된 속성
-
정밀분자량: 90.08g/mol
-
표면전하: 0
-
XLogP3: -0.7
-
수소 결합 공급체 수량: 2
-
수소 결합 수용체 수량: 3
-
회전 가능한 화학 키 수량: 1
-
동위원소 질량: 90.031694g/mol
-
단일 동위원소 질량: 90.031694g/mol
-
수소 결합 토폴로지 분자 극성 표면적: 57.5Ų
-
중원자 수량: 6
-
복잡도: 59.1
-
동위원소 원자 수량: 0
-
원자 구조의 중심 수량을 확정하다: 0
-
정의되지 않은 원자 구성 센터 수: 1
-
화학 키 입체 구조의 중심 수량을 확정하다: 0
-
불확정 화학 키 입체 중심 수량: 0
-
총 키 단위 수량: 1
- 상호 변형 이기종 수량: 아무것도 아니야
- 표면전하: 0
실험적 성질
-
냄새: Odorless
-
안정성 보증 기간: Stable under recommended storage conditions.
-
분해 하 다.: When heated to decompositionit emits acrid smoke and irritating fumes.
-
점도: Viscosities of aqueous lactic acid at 25 °C: 1.042 mPa s (6.29 wt%), 1.752 mPa s (25.02 wt%), 4.68 mPa s (54.94 wt%), 36.9 mPa s (88.60 wt%)
-
연소 열: 3615 cal/kg
-
해리 상수:pKa = 3.86 at 20 °C
-
맛 을 보다.: Mild acid taste and does not overpower weaker aromatic flavors
- PSA: 57.53
- 머크: 14,5336
- 굴절률: 1.4252-1.4272
- 수용성: SOLUBLE
- FEMA: 2611 | LACTIC ACID
- 농도: 85 % (w/w)
- 안정성: Stable. Combustible. Incompatible with strong oxidizing agents.
- 용해성: 그것은 물, 에탄올, 글리세린과 마음대로 혼합할 수 있으며, 에틸에테르에 용해되며, 염소모조, 석유에테르와 이황화탄소에 용해되지 않는다.
- 요행: 3
- 민감성: 습도에 민감하다
- 산도 계수(pKa): 3.08(at 100℃)
- 비선광도: -0.05 º (c= neat 25 ºC)
보안 정보
-
기호:
GHS05
- RTECS 번호:OD2800000
- WGK 독일:2
- 보안 용어:S26-S39-S45-S36/37/39
- 보안 지침:26-39
- 포장 범주:III
- 위험 용어:R34;R38;R41
- 위험 등급:8
-
위험물 표시:
Xi
- 위험물 운송번호:UN 1760
- 피해 선언:H315,H318
- 경고성 성명:P280,P305+P351+P338
- 제시어:위험했어
- 저장 조건:2-8°C
- 패키지 그룹:III
- 위험 범주 코드:38-41
- 신호어:Danger
- TSCA:Yes
- 위험 등급:8
- 포카표 F사이즈:3
합성회로
합성회로 1
반응 조건 확장
1.1R:NaOH, R:O2, C:CuO, S:H2O, 10-20 min, 120-200°C, 1 MPa
참조
Oxidative Catalytic Fractionation of Lignocellulose to High-Yield Aromatic Aldehyde Monomers and Pure Cellulose
By Zhu, Yuting et al,
ACS Catalysis,
2023,
13(12),
7929-7941
합성회로 2
반응 조건 확장
1.1R:NaOH, C:TiO2, C:CuO, rt, 20 bar; rt → 150°C
참조
Potential of catalytic oxidation of Kraft black liquor for the production of biosourced compounds
By Vilcocq, Lea et al,
ChemRxiv,
2023,
From ChemRxiv,
1-14
합성회로 3
반응 조건 확장
1.1R:H2SO4, R:H2O2
참조
Electrochemical conversion of lignin to short-chain carboxylic acids
By Sun, Shirong et al,
Green Chemistry,
2023,
25(8),
3127-3136
합성회로 4
반응 조건 확장
1.1C:H2SO4, S:H2O, 1 h, 100°C
참조
Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst
By Sobus, Natalia and Czekaj, Izabela,
Catalysts,
2023,
13(2),
349
합성회로 5
반응 조건 확장
1.1
Reagents:
Calcium carbonate
Solvents:
Water
;
15 min, 115 °C
1.2
Reagents:
Calcium hydroxide
Solvents:
Water
;
16 h, pH 6.2, 52 °C
참조
Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal
Xu, Ke; et al,
Bioresource Technology,
2014,
163,
33-39
합성회로 6
반응 조건 확장
1.1R:NaOH, R:O2, C:Au, C:12304-65-3, 4 h, 60°C, 1 MPa
참조
The support influence of Au-based catalysts in glycerin selective oxidation to glyceric acid
By Shen, Lingqin et al,
Journal of Chemical Technology and Biotechnology,
2023,
98(1),
179-187
합성회로 7
반응 조건 확장
1.1R:R:O2, S:H2O, 175°C, 30 bar
참조
Lignin alkaline oxidation using reversibly-soluble bases
By Kruger, Jacob S. et al,
Green Chemistry,
2022,
24(22),
8733-8741
합성회로 8
반응 조건 확장
1.1R:CeO2, R:KOH, C:Pt, 4 h, 60°C
참조
Tuning the Product Selectivity toward the High Yield of Glyceric Acid in Pt-CeO2/CNT Electrocatalyzed Oxidation of Glycerol
By Li, Jiefei et al,
ChemCatChem,
2022,
14(16),
e202200509
합성회로 9
반응 조건 확장
1.1R:CaCl2, R:R:NaHCO3, R:K2HPO4, R:NaCl, R:MgSO4, R:NaH2PO4, S:H2O, 12 h, 37°C, pH 7.0
참조
Determination of metabolites involved in fermentative succinic acid production from glucose, glycerol and crude glycerin by HPLC methodology
By Jaramillo, L. et al,
Revista Mexicana de Ingenieria Quimica,
2020,
19(2),
653-667
합성회로 10
반응 조건 확장
1.1R:NaOH, R:O2, C:Pt, C:TiO2, S:H2O, 110°C, 3 bar
2.1R:NaOH, R:O2, S:H2O, 110°C, 3 bar, pH 14
참조
Investigating Catalytic Properties Which Influence Dehydration and Oxidative Dehydrogenation in Aerobic Glycerol Oxidation over Pt/TiO2
By Tigwell, Max et al,
Journal of Physical Chemistry C,
2022,
126(37),
15651-15661
합성회로 11
반응 조건 확장
1.1R:O2, C:Pt, C:Ni, C:Zr, S:H2O, rt → 60°C; 6 h, 60°C, 10 bar
참조
Catalytic Oxidation of Glycerol over Pt Supported on MOF-Derived Carbon Nanosheets
By Ke, Yihu et al,
ACS Omega,
2022,
7(50),
46452-46465
합성회로 12
반응 조건 확장
1.1R:NaOH, R:O2, C:TiO2, C:Fe, C:Cr, S:H2O, 6 h, 140°C, 1 MPa
참조
CrOx decoration on Fe/TiO2 with tunable and stable oxygen vacancies for selective oxidation of glycerol to lactic acid
By Chu, Dawang et al,
New Journal of Chemistry,
2022,
46(39),
18744-18750
합성회로 13
반응 조건 확장
1.1R:K2HPO4, R:(NH4)2SO4, R:CaCl2, R:R:R:KH2PO4, R:NiCl2 •6H2O, R:R:ZnCl2, R:R:FeSO4, R:R:CuCl2 •2H2O, R:KCl, R:Na2SO4, R:NH4Cl, S:H2O, 15 min, 121°C, pH 7
참조
The effect of crude glycerol impurities on 1,3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ 2026
By Laura, Mitrea et al,
Renewable Energy,
2020,
153,
1418-1427
합성회로 14
반응 조건 확장
1.1
Catalysts:
Chromia
Solvents:
Water
;
3 h, 130 °C
참조
Silica-supported chromia-titania catalysts for selective formation of lactic acid from a triose in water
Takagaki, Atsushi
;
Goto, Hiroshi;
Kikuchi, Ryuji
;
Oyama, S. Ted,
Applied Catalysis,
2019,
570,
200-208
합성회로 15
참조
Preparation method of ciprofloxacin lactate from ciprofloxacin hydrochloridePreparation method of ciprofloxacin lactate and sodium chloride injectionPreparation of ciprofloxacin lactate
Lin, Guoquan; et al,
China,
1993,
24(11),
484-5
합성회로 16
참조
Preparation of norfloxacin lactate
,
China,
,
,
합성회로 17
참조
Preparation of norfloxacin lactate
Zhang, Xiao;
Wei, Shunxiong;
Liao, Qingjin;
Weng, Jun;
Ma, Donghong; et al,
Guangxi Huagong,
1997,
26(1),
15-17
합성회로 18
반응 조건 확장
1.1C:143334-20-7, C:TiO2, C:110045-09-5, 1 h, 60°C
참조
Relay photo/thermal catalysis enables efficient cascade upgrading of sugars to lactic acid: Mechanism study and life cycle assessment
By Ding, Yan et al,
Chemical Engineering Journal (Amsterdam,
2023,
452(Part_4),
139687
합성회로 19
반응 조건 확장
1.1R:KOH, C:TiO2, C:23412-51-3, S:H2O, 25°C
참조
Intermetallic PdZn nanoparticles loaded on deficient TiO2 nanosheets as a support: a bifunctional electrocatalyst for oxygen reduction in PEMFCs and the glycerol oxidation reactions
By Naik, Keerti M. et al,
Journal of Materials Chemistry A: Materials for Energy and Sustainability,
2022,
10(26),
13987-13997
관련 문헌
-
1.
Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides
Susanne Lux,Matth?us Siebenhofer
Catal. Sci. Technol. 2013 3 1380
-
2.
l-(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25
Ying Wang,Mohamed Ali Abdel-Rahman,Yukihiro Tashiro,Yaotian Xiao,Takeshi Zendo,Kenji Sakai,Kenji Sonomoto
RSC Adv. 2014 4 22013
-
3.
Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In–Sn-Beta zeolites
Meng Xia,Wenjie Dong,Zheng Shen,Shaoze Xiao,Wenbo Chen,Minyan Gu,Yalei Zhang
Sustainable Energy Fuels 2020 4 5327
-
4.
Melt/solid-state polytransesterification supported by an inert gas flow – an alternative route for the synthesis of high molar mass poly(l-lactic acid)
Izabela Steinborn-Rogulska,Pawe? Parzuchowski,Gabriel Rokicki
Polym. Chem. 2014 5 5412
-
5.
Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis
Michiel Dusselier,Pieter Van Wouwe,Annelies Dewaele,Ekaterina Makshina,Bert F. Sels
Energy Environ. Sci. 2013 6 1415
-
6.
High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2-evolution performance
Xinhe Wu,Duoduo Gao,Huogen Yu,Jiaguo Yu
Nanoscale 2019 11 9608
-
7.
Biomass to biodegradable polymer (PLA)
Mamata Singhvi,Digambar Gokhale
RSC Adv. 2013 3 13558
-
8.
Biomass to biodegradable polymer (PLA)
Mamata Singhvi,Digambar Gokhale
RSC Adv. 2013 3 13558
-
9.
Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25
Mohamed Ali Abdel-Rahman,Yukihiro Tashiro,Takeshi Zendo,Kenji Sonomoto
RSC Adv. 2013 3 8437
-
10.
The construction of helicate metal–organic nanotubes and enantioselective recognition
Yan-Wu Zhao,Xian-Ming Zhang
J. Mater. Chem. C 2020 8 4453
関連製品